
1

Gaining Insight into Parallel Program
Performance using HPCToolkit

John Mellor-Crummey
Department of Computer Science

Rice University

http://hpctoolkit.org

ATPESC August 11, 2014

2

Acknowledgments
• Current funding

— Argonne National Laboratory Subcontract 4F-30241
— DOE Office of Science ASCR X-Stack “PIPER” Award
— Intel

• Project team
— Research Staff

– Laksono Adhianto, Mike Fagan, Mark Krentel
— Students

– Milind Chabbi, Karthik Murthy
— Recent Alumni

– Xu Liu (William and Mary, 2014)
– Nathan Tallent (PNNL, 2010)

Challenges for Computational Scientists
• Rapidly evolving platforms and applications

— architecture
– rapidly changing multicore microprocessor designs
– increasing architectural diversity

 multicore, manycore, accelerators
– increasing scale of parallel systems

— applications
– transition from MPI everywhere to threaded implementations
– enhance vector parallelism
– augment computational capabilities

• Computational scientists needs
— adapt to changes in emerging architectures
— improve scalability within and across nodes
— assess weaknesses in algorithms and their implementations

3

Performance tools can play an important role as a guide

4

Performance Analysis Challenges
• Complex node architectures are hard to use efficiently

— multi-level parallelism: multiple cores, ILP, SIMD, accelerators
— multi-level memory hierarchy
— result: gap between typical and peak performance is huge

• Complex applications present challenges
— measurement and analysis
— understanding behaviors and tuning performance

• Supercomputer platforms compound the complexity
— unique hardware & microkernel-based operating systems
— multifaceted performance concerns

– computation
– data movement
– communication
– I/O

5

What Users Want
• Multi-platform, programming model independent tools

• Accurate measurement of complex parallel codes
— large, multi-lingual programs
— (heterogeneous) parallelism within and across nodes
— optimized code: loop optimization, templates, inlining
— binary-only libraries, sometimes partially stripped
— complex execution environments

– dynamic binaries on clusters; static binaries on supercomputers
– batch jobs

• Effective performance analysis
— insightful analysis that pinpoints and explains problems

– correlate measurements with code for actionable results
– support analysis at the desired level

 intuitive enough for application scientists and engineers
 detailed enough for library developers and compiler writers

• Scalable to petascale and beyond

6

Outline
• Overview of Rice’s HPCToolkit

• Pinpointing scalability bottlenecks
— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

• Understanding temporal behavior

• Assessing process variability

• Understanding threading performance
— blame shifting

• Today and the future

7

Rice University’s HPCToolkit
• Employs binary-level measurement and analysis

— observe fully optimized, dynamically linked executions
— support multi-lingual codes with external binary-only libraries

• Uses sampling-based measurement (avoid instrumentation)
— controllable overhead
— minimize systematic error and avoid blind spots
— enable data collection for large-scale parallelism

• Collects and correlates multiple derived performance metrics
— diagnosis typically requires more than one species of metric

• Associates metrics with both static and dynamic context
— loop nests, procedures, inlined code, calling context

• Supports top-down performance analysis
— identify costs of interest and drill down to causes

– up and down call chains
– over time

source
code

optimized
binary

compile & link call path
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source
[hpcprof/hpcprof-mpi]

database
presentation
[hpcviewer/

hpctraceviewer]

program
structure

HPCToolkit Workflow

8

source
code

optimized
binary

compile & link call path
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source
[hpcprof/hpcprof-mpi]

database
presentation
[hpcviewer/

hpctraceviewer]

program
structure

HPCToolkit Workflow

9

• For dynamically-linked executables, e.g., Linux
— compile and link as you usually do: nothing special needed

— For statically-linked executables, e.g., Blue Gene/Q
— add monitoring by using hpclink as prefix to your link line

– uses “linker wrapping” to catch “control” operations
 process and thread creation, finalization, signals, ...

source
code

optimized
binary

compile & link call path
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source
[hpcprof/hpcprof-mpi]

database
presentation
[hpcviewer/

hpctraceviewer]

program
structure

HPCToolkit Workflow

 Measure execution unobtrusively
— launch optimized application binaries

– dynamically-linked: launch with hpcrun, arguments control monitoring
– statically-linked: environment variables control monitoring

— collect statistical call path profiles of events of interest

10

Measure and attribute costs in context
 sample timer or hardware counter overflows
 gather calling context using stack unwinding

Call Path Profiling

11

Call path sample

instruction pointer

return address

return address

return address

Overhead proportional to sampling frequency...
...not call frequency

Calling context tree

source
code

optimized
binary

compile & link call path
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source
[hpcprof/hpcprof-mpi]

database
presentation
[hpcviewer/

hpctraceviewer]

program
structure

HPCToolkit Workflow

• Analyze binary with hpcstruct: recover program structure
— analyze machine code, line map, debugging information
— extract loop nesting & identify inlined procedures
— map transformed loops and procedures to source

12

source
code

optimized
binary

compile & link call path
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source
[hpcprof/hpcprof-mpi]

database
presentation
[hpcviewer/

hpctraceviewer]

program
structure

HPCToolkit Workflow

• Combine multiple profiles
— multiple threads; multiple processes; multiple executions

• Correlate metrics to static & dynamic program structure

13

source
code

optimized
binary

compile & link call path
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source
[hpcprof/hpcprof-mpi]

database
presentation
[hpcviewer/

hpctraceviewer]

program
structure

HPCToolkit Workflow

• Presentation
— explore performance data from multiple perspectives

– rank order by metrics to focus on what’s important
– compute derived metrics to help gain insight

 e.g. scalability losses, waste, CPI, bandwidth
— graph thread-level metrics for contexts
— explore evolution of behavior over time

14

Code-centric Analysis with hpcviewer

15

costs for
• inlined procedures
• loops
• function calls in full context

source pane

navigation pane metric pane

view control
metric display

16

The Problem of Scaling

0.500

0.625

0.750

0.875

1.000

1 4 16 64 25
6

10
24

40
96

16
38

4
65

53
6

Ef
fic

ie
nc

y

CPUs

Ideal efficiency
Actual efficiency

?

Note: higher is better

17

Goal: Automatic Scaling Analysis

• Pinpoint scalability bottlenecks

• Guide user to problems

• Quantify the magnitude of each problem

• Diagnose the nature of the problem

18

Challenges for Pinpointing Scalability Bottlenecks
• Parallel applications

— modern software uses layers of libraries
— performance is often context dependent

• Monitoring
— bottleneck nature: computation, data movement, synchronization?
— 2 pragmatic constraints

– acceptable data volume
– low perturbation for use in production runs

Example climate code skeleton

main

ocean atmosphere

wait wait

sea ice

wait

land

wait

19

Performance Analysis with Expectations
• You have performance expectations for your parallel code

— strong scaling: linear speedup
— weak scaling: constant execution time

• Put your expectations to work
— measure performance under different conditions

– e.g. different levels of parallelism or different inputs
— express your expectations as an equation
— compute the deviation from expectations for each calling context

– for both inclusive and exclusive costs
— correlate the metrics with the source code
— explore the annotated call tree interactively

200K

400K600K

20

Pinpointing and Quantifying Scalability Bottlenecks

=−

Q P

1/Q ×

coefficients for analysis
of weak scaling

1/P ×

• Parallel, adaptive-mesh refinement (AMR) code
• Block structured AMR; a block is the unit of computation
• Designed for compressible reactive flows
• Can solve a broad range of (astro)physical problems
• Portable: runs on many massively-parallel systems
• Scales and performs well
• Fully modular and extensible: components can be

combined to create many different applications

21

Scalability Analysis Demo

Cellular detonation
Helium burning on neutron stars

Laser-driven shock instabilitiesNova outbursts on white dwarfs

Rayleigh-Taylor instability
Orzag/Tang MHD
vortex

Magnetic
Rayleigh-Taylor Figures courtesy of FLASH Team, University of Chicago

Code: University of Chicago FLASH
Simulation: white dwarf detonation
Platform: Blue Gene/P
Experiment: 8192 vs. 256 processors
Scaling type: weak

Scalability Analysis of Flash (Demo)

22

Scalability Analysis
• Difference call

path profile
from two
executions
— different

number of
nodes

— different
number of
threads

• Pinpoint and
quantify
scalability
bottlenecks
within and
across nodes

23

significant scaling
losses caused by
passing data around
a ring of processors

Improved Flash Scaling of AMR Setup

24Graph courtesy of Anshu Dubey, U Chicago

• Profiling compresses out the temporal dimension
—temporal patterns, e.g. serialization, are invisible in profiles

• What can we do? Trace call path samples
—sketch:

– N times per second, take a call path sample of each thread
– organize the samples for each thread along a time line
– view how the execution evolves left to right
– what do we view?

 assign each procedure a color; view a depth slice of an execution

25

Understanding Temporal Behavior

Time

Processes

Call
stack

26

hpctraceviewer: detail of FLASH3@256PE
Time-centric analysis: load imbalance among threads appears

as different lengths of colored bands along the x axis

Measurement & Attribution of L2 Activity
• L2Unit measurement capabilities

— e.g., counts load/store activity
— node-wide counting; not thread-centric
— global or per slice counting
— supports threshold-based sampling

– samples delivered late: about 800 cycles after threshold reached
– each sample delivered to ALL threads/cores

• HPCToolkit approach
— attribute a share of L2Unit activity to each thread context for

each sample
– e.g., when using a threshold of 1M loads and T threads,

attribute 1M/T events to the active context in each thread when each
sample event occurs

— best effort attribution
– strength: correlate L2Unit activity with regions of your code
– weakness: some threads may get blamed for activity of others

27

OpenMP: A Challenge for Tools

• Runtime support is necessary for tools to bridge the gap

...

User-level calling context for
code in OpenMP parallel regions
and tasks executed by worker
threads is not readily available

• Large gap between between threaded programming models
and their implementations

28

Challenges for OpenMP Node Programs
• Tools provide implementation-level view of OpenMP threads

— asymmetric threads
– master thread
– worker thread

— run-time frames are interspersed with user code

• Hard to understand causes of idleness
— long serial sections
— load imbalance in parallel regions
— waiting for critical sections or locks

29

OMPT: An OpenMP Tools API
• Goal: a standardized tool interface for OpenMP

— prerequisite for portable tools
— missing piece of the OpenMP language standard

• Design objectives
— enable tools to measure and attribute costs to application source

and runtime system
• support low-overhead tools based on asynchronous sampling
• attribute to user-level calling contexts
• associate a thread’s activity at any point with a descriptive state

— minimize overhead if OMPT interface is not in use
• features that may increase overhead are optional

— define interface for trace-based performance tools
— don’t impose an unreasonable development burden

• runtime implementers
• tool developers

30

Integrated View of MPI+OpenMP with OMPT
LLNL’s luleshMPI_OMP (8 MPI x 3 OMP), 30, REALTIME@1000

source view

thread view

metric view

LLNL’s luleshMPI_OMP (8 MPI x 3 OMP), 30, REALTIME@1000

Integrated View of MPI+OpenMP with OMPT

MPI
ranks

OMP

time-centric
view

Blame-shifting: Analyze Thread Performance

Problem Approach

Undirected
Blame

Shifting1,3

A thread is idle
waiting for work

Apportion blame
among working
threads for not

shedding enough
parallelism to keep

all threads busy

Directed
Blame

Shifting2,3

A thread is idle
waiting for a mutex

Blame the thread
holding the mutex for

idleness of threads
waiting for the mutex

1Tallent & Mellor-Crummey: PPoPP 2009
2Tallent, Mellor-Crummey, Porterfield: PPoPP 2010
3Liu, Mellor-Crummey, Fagan: ICS 2013

OpenMP Tools API Status

• April 2014: OpenMP TR2
—OMPT: An OpenMP Tools Application Programming Interface for Performance

Analysis
– Alexandre Eichenberger (IBM), John Mellor-Crummey (Rice), Martin Schulz

(LLNL), Nawal Copty (Oracle), Jim Cownie (Intel), Robert Dietrich (TU Dresden),
Xu Liu (Rice), Eugene Loh (Oracle), Daniel Lorenz (Juelich), and other members
of the OpenMP tools subcommittee

—major step toward having a tools API added to OpenMP standard

• OMPT implementations: IBM, Intel (prototype), GOMP (partial), LLVM
(soon)

• Next steps
—transition OMPT prototype into Intel for use with production OpenMP runtime

– http://code.google.com/p/ompt-intel-openmp
– contributors: Rice, University of Oregon, RWTH Aachen, TU Dresden
– status: finalizing code in preparation for merge into Intel’s LLVM OpenMP

 ongoing dialog with Jim Cownie (Intel SSG/DPD/TCAR)
—propose OMPT additions to the language standard
—refine HPCToolkit OMPT support for production use

Ongoing Work and Future Plans
• Argonne

— deploy OMPT support for OpenMP on Blue Gene/Q
— scale I/O strategy

– one file per node rather than one file per thread
— scale traceviewer

– split traceviewer into client server
 server runs as a parallel program on vis cluster
 client runs on your laptop

• Other work
— data-centric analysis: associate costs with variables
— analysis and attribution of performance to optimized code

• Future plans
— resource-centric performance analysis

– within and across nodes
— scale measurement and analysis for exascale
— automated analysis to deliver performance insights

35

HPCToolkit at ALCF
• ALCF systems (vesta, mira, cetus)

— in your .soft file, add one of the following lines below
– +hpctoolkit-devel
– (this package is always the most up-to-date)

• Man pages
— automatically added to MANPATH by the aforementioned

softenv command

• ALCF guide to HPCToolkit
— http://www.alcf.anl.gov/user-guides/hpctoolkit

• Download binary packages for HPCToolkit’s user interfaces
on your laptop
— http://hpctoolkit.org/download/hpcviewer

36

Detailed HPCToolkit Documentation
 http://hpctoolkit.org/documentation.html

• Comprehensive user manual:
 http://hpctoolkit.org/manual/HPCToolkit-users-manual.pdf
— Quick start guide

– essential overview that almost fits on one page
— Using HPCToolkit with statically linked programs

– a guide for using hpctoolkit on BG/Q and Cray platforms
— The hpcviewer and hpctraceviewer user interfaces
— Effective strategies for analyzing program performance with

HPCToolkit
– analyzing scalability, waste, multicore performance ...

— HPCToolkit and MPI
— HPCToolkit Troubleshooting

– why don’t I have any source code in the viewer?
– hpcviewer isn’t working well over the network ... what can I do?

• Installation guide
37

Using HPCToolkit
• Add hpctoolkit’s bin directory to your path using softenv

• Adjust your compiler flags (if you want full attribution to src)
— add -g flag after any optimization flags

• Add hpclink as a prefix to your Makefile’s link line
— e.g. hpclink mpixlf -o myapp foo.o ... lib.a -lm ...

• See what sampling triggers are available on BG/Q
— use hpclink to link your executable
— launch executable with environment variable

HPCRUN_EVENT_LIST=LIST
– you can launch this on 1 core of 1 node
– no need to provide arguments or input files for your program

 they will be ignored

38

Collecting Performance Data on BG/Q
• Collecting traces on BG/Q

— set environment variable HPCRUN_TRACE=1
— use WALLCLOCK or PAPI_TOT_CYC as one of your sample

sources when collecting a trace

• Launching your job on BG/Q using hpctoolkit
— qsub -A ... -t 10 -n 1024 --mode c1 --proccount 16384 \

--cwd `pwd` \
--env OMP_NUM_THREADS=2:\
 HPCRUN_EVENT_LIST=WALLCLOCK@5000:\
 HPCRUN_TRACE=1\
your_executable

39

Monitoring Large Executions
• Collecting performance data on every node is typically not

necessary

• Can improve scalability of data collection by recording data
for only a fraction of processes
— set environment variable HPCRUN_PROCESS_FRACTION
— e.g. collect data for 10% of your processes

– set environment variable HPCRUN_PROCESS_FRACTION=0.10

40

Digesting your Performance Data
• Use hpcstruct to reconstruct program structure

— e.g. hpcstruct your_app
– creates your_app.hpcstruct

• Correlate measurements to source code with hpcprof and hpcprof-mpi
— run hpcprof on the front-end to analyze data from small runs
— run hpcprof-mpi on the compute nodes to analyze data from lots of

nodes/threads in parallel
– notes

 much faster to do this on an x86_64 vis cluster than on BG/Q
 avoid expensive per-thread profiles with --metric-db no

• Digesting performance data in parallel with hpcprof-mpi
— qsub -A ... -t 20 -n 32 --mode c1 --proccount 32 --cwd `pwd` \

/projects/Tools/hpctoolkit/pkgs-vesta/hpctoolkit/bin/hpcprof-mpi \
-S your_app.hpcstruct \
-I /path/to/your_app/src/+ \
hpctoolkit-your_app-measurements.jobid

• Hint: you can run hpcprof-mpi on the x86_64 vis cluster

41

Analysis and Visualization
• Use hpcviewer to open resulting database

— warning: first time you graph any data, it will pause to combine
info from all threads into one file

• Use hpctraceviewer to explore traces
— warning: first time you open a trace database, the viewer will

pause to combine info from all threads into one file

• Try our our user interfaces before collecting your own data
— example performance data

 http://hpctoolkit.org/examples.html

42

